Find the GCF (greatest common factor) of the following terms. 3x^(2)y^(3),x^(2)y^(2),6x^(3)y^(2) Find the GCF (greatest common factor) of the following terms 3x2y3,x2y2,6x3y2 (2024)

`); let searchUrl = `/search/`; history.forEach((elem) => { prevsearch.find('#prevsearch-options').append(`

${elem}

`); }); } $('#search-pretype-options').empty(); $('#search-pretype-options').append(prevsearch); let prevbooks = $(false); [ {title:"Recently Opened Textbooks", books:previous_books}, {title:"Recommended Textbooks", books:recommended_books} ].forEach((book_segment) => { if (Array.isArray(book_segment.books) && book_segment.books.length>0 && nsegments<2) { nsegments+=1; prevbooks = $(`

  • ${book_segment.title}
  • `); let searchUrl = "/books/xxx/"; book_segment.books.forEach((elem) => { prevbooks.find('#prevbooks-options'+nsegments.toString()).append(`

    ${elem.title} ${ordinal(elem.edition)} ${elem.author}

    `); }); } $('#search-pretype-options').append(prevbooks); }); } function anon_pretype() { let prebooks = null; try { prebooks = JSON.parse(localStorage.getItem('PRETYPE_BOOKS_ANON')); }catch(e) {} if ('previous_books' in prebooks && 'recommended_books' in prebooks) { previous_books = prebooks.previous_books; recommended_books = prebooks.recommended_books; if (typeof PREVBOOKS !== 'undefined' && Array.isArray(PREVBOOKS)) { new_prevbooks = PREVBOOKS; previous_books.forEach(elem => { for (let i = 0; i < new_prevbooks.length; i++) { if (elem.id == new_prevbooks[i].id) { return; } } new_prevbooks.push(elem); }); new_prevbooks = new_prevbooks.slice(0,3); previous_books = new_prevbooks; } if (typeof RECBOOKS !== 'undefined' && Array.isArray(RECBOOKS)) { new_recbooks = RECBOOKS; for (let j = 0; j < new_recbooks.length; j++) { new_recbooks[j].viewed_at = new Date(); } let insert = true; for (let i=0; i < recommended_books.length; i++){ for (let j = 0; j < new_recbooks.length; j++) { if (recommended_books[i].id == new_recbooks[j].id) { insert = false; } } if (insert){ new_recbooks.push(recommended_books[i]); } } new_recbooks.sort((a,b)=>{ adate = new Date(2000, 0, 1); bdate = new Date(2000, 0, 1); if ('viewed_at' in a) {adate = new Date(a.viewed_at);} if ('viewed_at' in b) {bdate = new Date(b.viewed_at);} // 100000000: instead of just erasing the suggestions from previous week, // we just move them to the back of the queue acurweek = ((new Date()).getDate()-adate.getDate()>7)?0:100000000; bcurweek = ((new Date()).getDate()-bdate.getDate()>7)?0:100000000; aviews = 0; bviews = 0; if ('views' in a) {aviews = acurweek+a.views;} if ('views' in b) {bviews = bcurweek+b.views;} return bviews - aviews; }); new_recbooks = new_recbooks.slice(0,3); recommended_books = new_recbooks; } localStorage.setItem('PRETYPE_BOOKS_ANON', JSON.stringify({ previous_books: previous_books, recommended_books: recommended_books })); build_popup(); } } var whiletyping_search_object = null; var whiletyping_search = { books: [], curriculum: [], topics: [] } var single_whiletyping_ajax_promise = null; var whiletyping_database_initial_burst = 0; //number of consecutive calls, after 3 we start the 1 per 5 min calls function get_whiletyping_database() { //gets the database from the server. // 1. by validating against a local database value we confirm that the framework is working and // reduce the ammount of continuous calls produced by errors to 1 per 5 minutes. return localforage.getItem('whiletyping_last_attempt').then(function(value) { if ( value==null || (new Date()) - (new Date(value)) > 1000*60*5 || (whiletyping_database_initial_burst < 3) ) { localforage.setItem('whiletyping_last_attempt', (new Date()).getTime()); // 2. Make an ajax call to the server and get the search database. let databaseUrl = `/search/whiletype_database/`; let resp = single_whiletyping_ajax_promise; if (resp === null) { whiletyping_database_initial_burst = whiletyping_database_initial_burst + 1; single_whiletyping_ajax_promise = resp = new Promise((resolve, reject) => { $.ajax({ url: databaseUrl, type: 'POST', data:{csrfmiddlewaretoken: "yPUyzpjHVEmzmOEnaH8wyQpQxZuIGdj8K4AcMc0td1bahYq93HOxuc2Fbf4KMcMF"}, success: function (data) { // 3. verify that the elements of the database exist and are arrays if ( ('books' in data) && ('curriculum' in data) && ('topics' in data) && Array.isArray(data.books) && Array.isArray(data.curriculum) && Array.isArray(data.topics)) { localforage.setItem('whiletyping_last_success', (new Date()).getTime()); localforage.setItem('whiletyping_database', data); resolve(data); } }, error: function (error) { console.log(error); resolve(null); }, complete: function (data) { single_whiletyping_ajax_promise = null; } }) }); } return resp; } return Promise.resolve(null); }).catch(function(err) { console.log(err); return Promise.resolve(null); }); } function get_whiletyping_search_object() { // gets the fuse objects that will be in charge of the search if (whiletyping_search_object){ return Promise.resolve(whiletyping_search_object); } database_promise = localforage.getItem('whiletyping_database').then(function(database) { return localforage.getItem('whiletyping_last_success').then(function(last_success) { if (database==null || (new Date()) - (new Date(last_success)) > 1000*60*60*24*30 || (new Date('2023-04-25T00:00:00')) - (new Date(last_success)) > 0) { // New database update return get_whiletyping_database().then(function(new_database) { if (new_database) { database = new_database; } return database; }); } else { return Promise.resolve(database); } }); }); return database_promise.then(function(database) { if (database) { const options = { isCaseSensitive: false, includeScore: true, shouldSort: true, // includeMatches: false, // findAllMatches: false, // minMatchCharLength: 1, // location: 0, threshold: 0.2, // distance: 100, // useExtendedSearch: false, ignoreLocation: true, // ignoreFieldNorm: false, // fieldNormWeight: 1, keys: [ "title" ] }; let curriculum_index={}; let topics_index={}; database.curriculum.forEach(c => curriculum_index[c.id]=c); database.topics.forEach(t => topics_index[t.id]=t); for (j=0; j

    Solutions
  • Textbooks
  • `); } function build_solutions() { if (Array.isArray(solution_search_result)) { const viewAllHTML = userSubscribed ? `View All` : ''; var solutions_section = $(`
  • Solutions ${viewAllHTML}
  • `); let questionUrl = "/questions/xxx/"; let askUrl = "/ask/question/xxx/"; solution_search_result.forEach((elem) => { let url = ('course' in elem)?askUrl:questionUrl; let solution_type = ('course' in elem)?'ask':'question'; let subtitle = ('course' in elem)?(elem.course??""):(elem.book ?? "")+"    "+(elem.chapter?"Chapter "+elem.chapter:""); solutions_section.find('#whiletyping-solutions').append(` ${elem.text} ${subtitle} `); }); $('#search-solution-options').empty(); if (Array.isArray(solution_search_result) && solution_search_result.length>0){ $('#search-solution-options').append(solutions_section); } MathJax.typesetPromise([document.getElementById('search-solution-options')]); } } function build_textbooks() { $('#search-pretype-options').empty(); $('#search-pretype-options').append($('#search-solution-options').html()); if (Array.isArray(textbook_search_result)) { var books_section = $(`
  • Textbooks View All
  • `); let searchUrl = "/books/xxx/"; textbook_search_result.forEach((elem) => { books_section.find('#whiletyping-books').append(` ${elem.title} ${ordinal(elem.edition)} ${elem.author} `); }); } if (Array.isArray(textbook_search_result) && textbook_search_result.length>0){ $('#search-pretype-options').append(books_section); } } function build_popup(first_time = false) { if ($('#search-text').val()=='') { build_pretype(); } else { solution_and_textbook_search(); } } var search_text_out = true; var search_popup_out = true; const is_login = false; const user_hash = null; function pretype_setup() { $('#search-text').focusin(function() { $('#search-popup').addClass('show'); resize_popup(); search_text_out = false; }); $( window ).resize(function() { resize_popup(); }); $('#search-text').focusout(() => { search_text_out = true; if (search_text_out && search_popup_out) { $('#search-popup').removeClass('show'); } }); $('#search-popup').mouseenter(() => { search_popup_out = false; }); $('#search-popup').mouseleave(() => { search_popup_out = true; if (search_text_out && search_popup_out) { $('#search-popup').removeClass('show'); } }); $('#search-text').on("keyup", delay(() => { build_popup(); }, 200)); build_popup(true); let prevbookUrl = `/search/pretype_books/`; let prebooks = null; try { prebooks = JSON.parse(localStorage.getItem('PRETYPE_BOOKS_'+(is_login?user_hash:'ANON'))); }catch(e) {} if (prebooks && 'previous_books' in prebooks && 'recommended_books' in prebooks) { if (is_login) { previous_books = prebooks.previous_books; recommended_books = prebooks.recommended_books; if (prebooks.time && new Date().getTime()-prebooks.time<1000*60*60*6) { build_popup(); return; } } else { anon_pretype(); return; } } $.ajax({ url: prevbookUrl, method: 'POST', data:{csrfmiddlewaretoken: "yPUyzpjHVEmzmOEnaH8wyQpQxZuIGdj8K4AcMc0td1bahYq93HOxuc2Fbf4KMcMF"}, success: function(response){ previous_books = response.previous_books; recommended_books = response.recommended_books; if (is_login) { localStorage.setItem('PRETYPE_BOOKS_'+user_hash, JSON.stringify({ previous_books: previous_books, recommended_books: recommended_books, time: new Date().getTime() })); } build_popup(); }, error: function(response){ console.log(response); } }); } $( document ).ready(pretype_setup); $( document ).ready(function(){ $('#search-popup').on('click', '.search-view-item', function(e) { e.preventDefault(); let autoCompleteSearchViewUrl = `/search/autocomplete_search_view/`; let objectUrl = $(this).attr('href'); let selectedId = $(this).data('objid'); let searchResults = []; $("#whiletyping-solutions").find("a").each(function() { let is_selected = selectedId === $(this).data('objid'); searchResults.push({ objectId: $(this).data('objid'), contentType: $(this).data('contenttype'), category: $(this).data('category'), selected: is_selected }); }); $("#whiletyping-books").find("a").each(function() { let is_selected = selectedId === $(this).data('objid'); searchResults.push({ objectId: $(this).data('objid'), contentType: $(this).data('contenttype'), category: $(this).data('category'), selected: is_selected }); }); $.ajax({ url: autoCompleteSearchViewUrl, method: 'POST', data:{ csrfmiddlewaretoken: "yPUyzpjHVEmzmOEnaH8wyQpQxZuIGdj8K4AcMc0td1bahYq93HOxuc2Fbf4KMcMF", query: $('#search-text').val(), searchObjects: JSON.stringify(searchResults) }, dataType: 'json', complete: function(data){ window.location.href = objectUrl; } }); }); });
    Find the GCF (greatest common factor) of the following terms.
3x^(2)y^(3),x^(2)y^(2),6x^(3)y^(2)
Find the GCF (greatest common factor) of the following terms
3x2y3,x2y2,6x3y2 (2024)

    FAQs

    What is the greatest common factor of 15x2y3 and 18x3yz? ›

    Summary: The greatest common factor of the terms 15x2y3 and -18x3yz is 3x2y.

    What is the greatest common factor GCF of 2 and 3? ›

    The GCF of 2 and 3 is 1. To calculate the GCF (Greatest Common Factor) of 2 and 3, we need to factor each number (factors of 2 = 1, 2; factors of 3 = 1, 3) and choose the greatest factor that exactly divides both 2 and 3, i.e., 1.

    What is the greatest common factor of x2 and x3? ›

    Answer: The common factor for the variables x3,x2,x1 x 3 , x 2 , x 1 is x . The GCF for the variable part is x .

    What is the GCF of 6 and 39? ›

    The GCF of 39 and 6 is 3. To calculate the GCF (Greatest Common Factor) of 39 and 6, we need to factor each number (factors of 39 = 1, 3, 13, 39; factors of 6 = 1, 2, 3, 6) and choose the greatest factor that exactly divides both 39 and 6, i.e., 3.

    How can I find the greatest common factor? ›

    To find the GCF of a set of numbers, list all the factors of each number. The greatest factor appearing on every list is the GCF. For example, to find the GCF of 6 and 15, first list all the factors of each number. Because 3 is the greatest factor that appears on both lists, 3 is the GCF of 6 and 15.

    What is 2 and 4 greatest common factor? ›

    What is the GCF of 2 and 4? The GCF of 2 and 4 is 2. To calculate the greatest common factor (GCF) of 2 and 4, we need to factor each number (factors of 2 = 1, 2; factors of 4 = 1, 2, 4) and choose the greatest factor that exactly divides both 2 and 4, i.e., 2.

    How to find GCF fast? ›

    List out the prime factors of all the numbers. Circle the common prime factors among all the numbers. Multiply all the circled numbers to find the GCF.

    Do 3 and 2 have common factors? ›

    1 is the only common factor between 2 and 3.

    What is the common factor of x3 y2 and x4 y? ›

    The common factor of x³y² and x⁴y is x³y.

    What is the greatest common factor of x5 and x3? ›

    The factors for x3 are x⋅x⋅x x ⋅ x ⋅ x . List all the factors for x5,x3 x 5 , x 3 to find the common factors. The common factors for the variables x5,x3 x 5 , x 3 are x⋅x⋅x x ⋅ x ⋅ x . The GCF for the variable part is x3 .

    What is the HCF of x2 y2 and x3 y3? ›

    Answer: The H.C.F. of polynomials x2-y2 and x3-y3 is (x-y). In both expressions, (x-y) is common factor. Therefore H.C.F. of polynomials x2-y2 and x3-y3 is (x-y).

    What is the LCM of 3 and 6 and 9? ›

    LCM of 3, 6 and 9 is 18. The least common multiple of two numbers is the smallest number which is a multiple of both the numbers.

    What is the LCM factor of 9 and 6? ›

    LCM of 6 and 9 is 18. LCM, also known as Least Common multiple or Lowest common multiple, is the smallest or the least positive integer that is divisible by the given set of numbers. Consider the example for finding the LCM of 6 and 9. The answer is 18.

    What is the HCF of 69 96 99? ›

    Hence, the H.C.F of the given numbers is 3 .

    What is the greatest common factor of 15x 2 and 18x? ›

    To find the GCF of the terms in the polynomial 15x² + 18, we factor each term and identify the common factors. The GCF is the largest shared factor, which in this case is 3. Therefore, the GCF of the polynomial is 3.

    What is the greatest common factor of 12x 2 and 18x? ›

    Explanation: Part A: The greatest common factor of the expression 12x^2 + 18x - 12 is 6. To find the greatest common factor, we look for the largest number that divides all the terms evenly. In this case, we can divide each term by 6 to get 2x^2 + 3x - 2.

    How do you find the greatest common factor of two factors? ›

    The greatest common factor is the greatest factor that divides both numbers. To find the greatest common factor, first list the prime factors of each number. 18 and 24 share one 2 and one 3 in common. We multiply them to get the GCF, so 2 * 3 = 6 is the GCF of 18 and 24.

    What is the greatest common factor of 60xty7 45x5y5 and 75x3y? ›

    Summary: The greatest common factor of 60x4y7, 45x5y5, and 75x3y is 15x3y.

    Top Articles
    Latest Posts
    Article information

    Author: Mr. See Jast

    Last Updated:

    Views: 5505

    Rating: 4.4 / 5 (75 voted)

    Reviews: 90% of readers found this page helpful

    Author information

    Name: Mr. See Jast

    Birthday: 1999-07-30

    Address: 8409 Megan Mountain, New Mathew, MT 44997-8193

    Phone: +5023589614038

    Job: Chief Executive

    Hobby: Leather crafting, Flag Football, Candle making, Flying, Poi, Gunsmithing, Swimming

    Introduction: My name is Mr. See Jast, I am a open, jolly, gorgeous, courageous, inexpensive, friendly, homely person who loves writing and wants to share my knowledge and understanding with you.